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Abstract

We develop a new approach that combines interactive steering and solution adaptive
control over adaptive mesh refinement based on nested refined grids. The adaptive grid
can be generated dynamically during the solution process or controlled by directives
in a grid refinement file. Instead of generating a new adaptive grid every time the
equation is solved, this approach allows a user to use previous numerical simulations
to directly control refinement in future simulations. Thus, a user can use knowledge
from previous runs of similar problems to specify the regions where extra refinement is
needed or eliminate refinement regions that don’t affect the accuracy of the quantities
he is interested in. We describe the advantages of converting the hierarchical AMR
data structure to a conventional linear data structure for one dimensional problems
to facilitate using implicit or multistep temporal integration. We present numerical
examples and demonstrate the proposed algorithm can be easily incorporated into
both new applications and legacy codes.

1 Introduction

The adaptive mesh refinement (AMR) method [1, 3, 14, 15] refines the numerical approx-
imation of partial differential equations (PDEs) in space and time. The hierarchical data
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structure requires fewer space-time elements than the adaptive methods on a single grid.
Surprisingly, relatively few PDE codes use AMR methods because the traditional AMR ap-
proach is subtle to control and cumbersome to code for general problems. One of our goals
is to seek new approaches so the AMR method can be incorporate in existing codes in a
simple, consistent manner.
AMR uses block-structure and each level of grid can contain several logical rectangular

grids (called patch) which can be integrated independently. It refines the time as well as
space. More but smaller time steps are taken on fine grids than on coarse grids. The
hierarchical nature of the grid system allows the different sized time steps to be interleaved
such that the simulation remains time accurate.
The numerical solution of evolutionary differential equations is advanced in time in dis-

crete steps that vary, depending on the local behavior of the solution; that is, the length of
the time steps on each patch depends on accuracy and stability requirement of the solutions
on the local grid, which is usually proportional to the local spacing.
Even though AMR has been designed for 2-D and 3-D problems (and the gain in efficiency

is much greater than in 1-D), it is insightful to investigate the adaptation strategies and
control of the AMR in 1-D. We simplify the hierarchical data structure for 1-D problems by
adapting the data structure used by Berger [3] to work with an indexed linear array. This
1-D simplification improves the efficiency of finite difference methods (FDMs) and is easier
to use with multistep and implicit temporal integration. The linear array data structure
representation of the grid also simplifies the analysis and visualization of the solution.
Numerical simulations that use an adaptive single non-hierarchical global grid have a

simpler data structure than the AMR hierarchical data structure we are using. Also as the
non-hierarchical mesh adapts to the solution, except when the number of mesh points change,
there is no data movement. However, even small changes in the number of mesh points can
force large movements of data. A major disadvantage of an adaptive non-hierarchical grids is
that the accuracy and stability constraints of numerical integration methods limit the global
time step by the smallest grid spacing. Thus if a local highly refined region can force an
extremely small global time step
Another advantage of using a hierarchical data structure to locally refine the mesh is that

the grid spacing can be uniform on each of the refinement levels. This makes it easier to use
higher order numerical methods such as fourth or sixth finite difference methods (FDMs)
or pseudospectral methods. Because higher order FDMs require far fewer points than lower
order methods this is a major advantage of the uniform adaptive hierarchical grid over a
non-hierarchical nonuniform adaptive global grid.
One of the perplexing questions is why so very few large-scale production codes use

modern adaptive mesh methods. A well worn phrase in large scale modeling is ”if it is
not in the design code, it will not affect the design.” Because reliable robust adaptive mesh
software for a production code can take years to develop there is huge threshold cost in time
and funding for a code teams to do even a simple test case to see if it performs better than
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the existing methods. Also, the majority of existing adaptive mesh software is so complex
that if the adaptive mesh package breaks, the user (designer) cannot fix it without some
significant help from the experts who wrote the package. The designer must have control
over the design software, especially when there are tight deadlines. (It is not unusual to
hear statements that ”the product is going out the door next week and we have to have the
best possible simulation now.”) The adaptive mesh methods and software have not been at
a stage where code developers are willing to trust their job/career on them.
We implement the AMR algorithms so they are easily used by existing codes with an

independent module (subroutine) that can advance the solution on a single mesh. We have
attempted to make the interface simple so that a user need only modify about a dozen lines
of code for our AMR system to automate the refinement process.
Typically AMR packages try and do everything for the user, even when the user may

know where the adaptation should be placed. Also, many time consuming computer runs
solve similar problems many times. We have designed the AMR software so a user make
use of information from previous runs to help guide and control the adaptive mesh of future
runs. This allows a user to run carefully controlled convergence studies and overcome some
of the limitations on the monitor functions that guide the AMR refinement algorithms.
Adaptive mesh refinement is guided by a function that monitors the local truncation

error. Usually these monitor functions do well for adapting for problems with small errors,
but can be erratic for problems with moderate size errors (> 5%). Sometimes these moderate
errors are unavoidable because of CPU or storage limits on the number of mesh points that
a computer system can support. Also, there often are instances when the solution in certain
regions of a complex simulation is no longer relevant and no longer needs to be refined. By
giving the user a simple way to explicitly control the mesh refinement it can be easily turned
off in these regions. We have included simple directives in our AMR software so a user can
impose full control over where and when the refinement will take place.
One problem with many of the existing AMR software systems is that the user’s code

must conform to the computer language and the data structures of the AMR code. This
sets an extremely high threshold for potential users, especially if the code is to convert a
large-scale production code to use AMR. Adapting a production code just to determine if
AMR is an effective approach is a major investment. We have taken the view point that
the AMR code should be designed so that it can adapt to work in the same environment
(framework) user’s code.
The outline of the paper is as follows. After describing the basics of the 1-D AMR

algorithm and specifying the details of our hierarchical data structure for the grid and solu-
tion in Section 2, we describe the regridding, injection, projection and clustering algorithms
(Section 3). In Section 4 we describe the mechanism for users to control the refinement
and integration. In Section 5, we use numerical examples to show the effectiveness of our
approach.



LA-UR-98-5462 4

2 Hierarchical Grid Structure

The basics of the 1-D AMR algorithm is illustrated in Fig. 1. The grid has three refinement
levels (G0, G1, G2) at time tm. The integration starts from the coarsest level G0, which
advances one time step to tm+1. Suppose the solution requires that the time stepsize for G1
is half of that for G0, and for G2 is one-fourth of that for G0. Then in the second step G1
advances one time step to tm+ 1

2

, where the boundary conditions can be obtained from G0. In
the third step, G2 advances two time step to tm+ 1

2

. After G1 and G2 reaches the same time,
we update the solution of G1 with the solution of G2, because G2 contains more accurate
solution than G1. In the fourth step, G1 advances another step to tm+1. In the fifth step, G2
advances another two steps to tm+1. Now G0, G1, G2 reaches the same time level. We first
update the solution of G1 with that of G2, and then update the solution of G0 with that of
G1. The updating occurs only when the finest level grid reaches the same time level with
the coarser grid. In step 6, we readapt the mesh and generate a new hierarchical grid. This
readaptation can also be taken after each updating (e.g., at step 3).
To efficiently manage the data on each level, in the AMR algorithm the points are grouped

(clustered) into disconnected segments, called patches. These patches are the building blocks
for the hierarchical grid structure and are the basic data unit for refining the grid in both
space and time. A patch is treated as a single grid with all the attributes of a single
grid. Because there is only one parent and no siblings for patches in a 1-D AMR grid, the
algorithms for clustering, refining, projection and injection, and integration are simpler than
in higher dimensions [13].
We use an indexed linear array hierarchical data structure and store the grid descriptor

information, node positions, and solutions in separate arrays. The hierarchical grid data
structure G = |n|G1|G2|...|Gn| contains the number of levels of the grid, n and pointers
to the grid on each of the lower levels. The data structure for the grid on the i-th level
Gi = |mi|p1|Gi,1|p2|Gi,2|...|pmi

|Gi,mi
| contains information on the patches, where mi denotes

the number of patches. The data structure Gi,j contains information for the j-th patch on
the i-th level and contains information related to the patch. The pointer pj is the index
of the parent of the patch Gi,j in the coarse grid Gi−1 and facilitates the regridding and
projection operations between the coarse and fine grids.
An array stores the starting position of each level and other attributes such as the current

integration time, time step size for the current level, number of ghost boundaries, number
of buffer zones in the current level and refinement ratio to the parent. For each patch, we
use the notation Ibx and Iex for the indexed of the first and last point where the solution
is defined in the patch. The solution is being integrated for the indices in iε[Ib, Ie] and the
ghost boundary points are defined for indices between iε[Ibx, Ib − 1] and iε[Ie − 1, Iex].
We have adapted the grid structure proposed by Berger([2, 3]). Her flexible approach is

amenable to different dynamic memory allocation approaches. A patch is a basic computa-
tional unit and it has the following attributes:
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Figure 1: AMR processing: 1) Advance G0 one step to tm+1; 2) Advance G1 one step to tm+ 1
2
; 3) Advance

G2 two steps to tm+ 1
2
, update the solution of G1 at tm+ 1

2
with that of G2; 4) Advance G1 one step to tm+1;

5) Advance G2 two steps to tm+1, update the solution of G1 (G0) with that of G2 (G1); 6) Readapt the
mesh to generate a new G1 and G2, goto 1).
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• level of the current patch

• integration time of the current patch

• time step size ∆t for this patch

• number of grid points

• logical grid index for each point

• physical grid location for each point in the patch

• number of ghost boundary points

• spatial step-length (∆x)

• solution values

• pointers to parent patches (only one parent in 1-D)

• refinement ratio between the parent and current patch

• multiple pointers to the siblings (in 2-D or 3-D).

3 The AMR Integration algorithm

The solution is advanced in time by an AMR method recursively (see Fig. 1), similar to a
W-cycle in the multigrid method [4]. Figure 2 provides a top level pseudo-code description
of the AMR algorithm.

3.1 The Remesh Algorithm

The Remesh stage to cover subdomains with grids of higher resolution is the most algorith-
mically complex AMR operation in the refinement process. The whole stage can be split
into two processes: readapt (including refine and coarsen) the available grid and refine to
generate new finer grid. In the first process, there may be features which appear in the
finer levels that would not be captured if we start with the solution on the coarsest grid
and then adapting the grid to the finer levels. To prevent this from happening, unlike the
local uniform grid refinement (LUGR) method [19], we initialize the mesh refinement on the
finest level possible. This grid is then coarsened or refined based on the selection algorithm.
This process continues until all of the indicated levels have been readapted. The regridding
step (defining the solution values for the readapted grid) is done reversely. It starts from the
coarsest level possible. After the first process, if the finest level available does not reaches the
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INTEGRATE(level)
begin

Let maxlevel = the maximum level allowable, flevel = the finest level existing;
Remesh Stage(level): If it is time to readapt the grid then
flevel = min(flevel + 1,maxlevel);
while (flevel-1 needs no refining) decrease flevel by 1;
for slevel = flevel-1 down to level do

Refine(slevel)
Select (slevel): flag the inaccurate points which need refining;
Expand (slevel): add buffer zones around the flagged region;
Cluster (slevel): group the flagged points into clusters;

for slevel = level up to flevel-1 do
Regrid (slevel +1): define the solution values for the readapted grid;

while (flevel < maxlevel and flevel needs refining) do
Refine (flevel);
Regrid (flevel + 1);
increase flevel by 1;

Advance Stage(level):
Boundary Collection (level): obtain the boundary values from level-1;
Advance (level): advance the current level one time step;

Recursive Stage (level):
If level 6= flevel then for r = 1 to ∆tlevel/∆tlevel+1 do

INTEGRATE (level+1);
Recursively advance the solution on level + 1 one time step;

Project Stage (level, level+1);
update the solution on level with the solution on level+1.

end

Figure 2: Pseudo-code for 1-D AMR recursive integration algorithm.

maximum level allowable and it needs further refinement, then we start the second process
to refine and generate finer level.
One of the great advantages of the AMR method is that the refinement is in both space

and time. Because of this, when there are significant fine scales in the problem, the majority
of computing time is spent on the finest level. For nonlinear systems of PDEs the refine-
ment factor in time for an explicit method must be estimated for each level based on the
requirements of stability and accuracy. To simplify the projection and regridding algorithm
we require the ratio of the time step sizes between two adjacent levels to be an integer, i.e.,
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∆tlevel/∆tlevel+1 in Fig. 2 should be precisely an integer.
In most AMR methods and systems and for first order systems of hyperbolic PDEs, if

the refinement factor between a level l+1 and the next coarser level l is r, then grids on the
finer level l+1 will be advanced r time-steps for each coarser time-step [2, 1, 14, 15] to keep
the time step stability restriction (CFL number) the same for all of the refinement levels.
For second order parabolic PDEs, when the stability limitation for explicit time integration
is proportional to ∆t/(∆x2) instead of ∆t/∆x, there should be r2 time steps on the finer
grid for every time step on the next level.
We now describe the two small steps of the remesh stage: refine and regrid.

3.1.1 Refine step

In the refine step, the monitor function is evaluated on the current level and the points
with significant errors are flagged for refinement. After buffer points are added around these
points, they clustered and organized into patches. Refinement step includes three small
steps: select, expand, and cluster.

Select step

In the select step we identify (flag) the grid points that need to be refined. We adopt the
monitor function proposed by Verwer et al. [19] to flag the over or under resolved mesh
points and identify the regions to coarsen or refine. This monitor function

SPCMON(i) := max
j
SPCTOL(j)(|∆x2uj

xx(i)|) (1)

where

SPCTOL(j) :=
SPCWGT(j)

UMAX(j) · TOLS .

is defined for each grid point xI for the jth solution component u
j
I .. The weighting factor

0 < SPCWGT ≤ 1 is a user specified parameter to indicate the relative importance of a PDE
component. The parameters UMAX denotes the approximate maximum absolute value for
each component, and TOLS is the spatial error tolerance. The second order derivative is
approximated by a three point FDM. We initial a level refinement if there is a point where
SPCMON(i) > 1.0, and then all grid points with SPCMON(i) > 0.5 are flagged. In order to
ensure proper nesting, if the current level grid has a grandchild, those points are also flagged.
The mesh refinement can also be guided by a monitor function based on the Richardson

truncation error estimation proposed by Berger et al. [1, 2]. However, this approach requires
the solutions on a half resolution (of current fine grid) grid, which may not be easily imple-
mented without much alteration of the time integration solver. To accomordate the need
of different type of monitor functions, including the type of Rechardson truncation error
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estimation, we do have an option in our implementation that allows the users to provide a
new one to replace our default one.

Expand step

Because the regions needing refinement may move, to avoid the most interesting features of
the solution escape from the refinement region and to reduce the amount of rezoning, we
surround (expand) the flagged points with a buffer zone of flagged points where the mesh
function is below the threshold value. Expansion serves to ensure coverage of the grids on
the current level for the next k time steps. To reduce the overhead of the refinement, we
perform the refinement every k time steps instead of every time step. We add buffer zones to
the flagged points so that a region needing refinement will not escape onto the coarse grid.
The size of the buffer zone depends on k and the current time stepsize.
To estimate the trade-off between the number of buffer zones and the size of k we com-

pared two approaches. In one approach we performed refinement Refine(1). only after
integration on the whole grid was completed The number of buffer zones is different for
different levels in this approach, because finer levels take more integration steps so that they
need more buffer zones. Usually, we assume the discontinuity moves no more than one buffer
zone within one time integration. So we choose the number of buffer zones to be equivalent
to one base grid. (In our tests we observed that the the number of buffer zones can be much
less than this). We found this approach is most efficient when the user is directly controlling
the mesh refinement and the refinement regions change very slowly.
In the second approach, we perform refinement for the current level after it has advanced

time steps and fix number of points in the buffer zones for all the grid levels. Therefor, there
are fewer points in the buffer zones than in the first approach and the patches for finer levels
are smaller. This approach has more overhead costs (about 8% of the cost of the AMR is in
this step) but it reduced the total computation time because of the savings integrating the
smaller fine grid levels.

Cluster step

Following expansion, the flagged points at level l are clustered. We search from left to right
for each coarse patch, identify the adjacent flagged points and group them together. If two
patches are within two buffer zones, we join them together. The clustering algorithm is far
more complex in higher dimensions than in 1-D.

3.1.2 Regrid step

Regridding the (l+ 1) level includes computing the physical locations for each fine grid and
copying or injecting the solution from the old grid to the new grid. The physical positions
are computed by linear interpolation. Although the solution can be obtained from the



LA-UR-98-5462 10

coarse grid by injection or interpolation, usually a new refinement is partially or completely
contained in an existing patch. It is far more accurate to use as many existing values as
possible from the previous patch on the same level which partially overlays with the new grid.
These overlap regions retain accuracy when there are discontinuities in the solution within
overlapping regions between the new grid and old grid. This approach also guarantees that
near discontinuities the numerical solution largely exhibits the properties of the numerical
scheme used for the single mesh integration process. To preserve the monotonicity of the
solution for hyperbolic conservative law on the new refined grid, a monotonicity preserved
cubic interpolation [6] is used.

3.2 The Advance Stage

During the Advance stage in Fig. 2, the solver or kernel of a simulation advances the
solution for all the patches in a level by advancing the solution to a specified time. Because
the details of the method to advance the solution are not directly relevant to AMR, many
existing codes written to advance a solution on a single mesh can be easily adapted to use our
software. This is especially true if the existing code allows the user to specify the boundary
conditions, the initial condition, a routine that defines the time derivatives (or residual for
differential algebraic equations), and other related information such as the time step size,
the spatial step length then it can probably be easily extended to an AMR code.
In this stage, one of the important issues is the boundary collection for the current

level. Because the sub-grid (patch) may have only one or no external boundary whereas the
solver input by the user always assumes two external boundaries, it is necessary to turn off
the boundary collection inside the user solver and to do the boundary collection inside the
AMR system. It is usually a minor change for the code to be structured so the boundary
conditions are imposed outside the solver.

3.2.1 Boundary collections

Computing accurate boundary conditions for a system of partial differential equations can
be as important as accurately approximating the spatial derivatives in the interior of the
domain. The errors introduced into the calculation from improper boundary conditions
persist even as the mesh spacing tends to zero. If the boundary conditions are not properly
incorporated into the discrete approximation, a well-posed problem in differential equations
can be changed into an ill-posed (unstable) discrete one.
There are two types of boundaries in an AMR system: External boundaries are given by

the problem definition; internal boundaries are needed by the patches imbedded within the
domain. The left and the right end (boundary) of each 1-D patch could be either an external
or internal boundary point. It is especially important to apply the boundary conditions at the
proper time when the equations have time dependent coefficients or when intermediate time
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derivatives of the boundary cells are required. This is similar to the care that is most taken
to keep the proper time for the boundary conditions when using multistage Runge-Kutta
type methods.
For internal boundary conditions, we use linear or cubic Hermite interpolation between

the values for the internal boundaries from the parent coarse grid at the forward time tn+1
and the boundary values at tn on the finer grid. The external boundary conditions may also
be included by defining the solution at ghost cells external to the problem domain.
Our AMR system is automated to impose external Dirichlet, periodic, symmetric, anti-

symmetric or extrapolated boundary conditions. The periodic boundary conditions require
information at both sides of the domain, while the other boundary conditions need only local
information. We do not allow a periodic boundary to be inside a patch, therefore when a
patch has an external boundary that is periodic, we check whether another patch is adjacent
to it on the other external boundary. If so, the ghost cells are copied from one patch to
the other. After clustering in a periodic problem, if there is an adjacent patch at the other
side and if appropriate, we insert a patch at the other end and modify the grid structure
appropriately.
Another simple method to treat periodic boundary conditions is to perform the copying

from one end to the other only when both ends have patches. This method does not need
to alter the grid structure to accommodate periodic boundary conditions. This approach
works well when we perform the refinement during the integration of the finer grid. This is
because for the second approach, the new patches of the finer level can be added during the
integration. For a semi-discretized PDE solver and method of lines approach we combine
and integrate the periodic boundary patches as a single patch.
Many AMR methods (e.g. [1, 2, 14, 15]) do not store the solutions for the ghost boundary,

and obtain the initial values just before integration. This works when the solver does not
collect boundary values from the parent grid or external boundaries during a one time
step integration. Many fully-discretized PDE solvers with a predictor-corrector integration
methods belong to this category and can be plugged into our AMR system directly.
This approach is not sufficient for a semi-discretized PDE being solved with method of

lines (MOL) when the values at the ghost boundaries are not calculated by the solver but
collected from the parent coarse grid or according to the external boundary conditions during
the integration. If an implicit or high order explicit temporal integration method (such as a
third order TVD Runge-Kutta method [16]) is used, the solutions at intermediate times are
required at the ghost boundaries. Therefore, we store both the ghost boundary values and
the internal node values. For a semi-discretized PDE and a single-step high order explicit
method, we compute the time derivatives at the ghost boundaries using the boundary values
at the forward time (collected before the time integration of the current patch) and backward
time, and keep them as constant during a one time-step integration. The external boundary
values are collected if the current patch reaches the external boundaries. After the time
derivatives for the internal nodes are computed by the user routine. We advance the whole
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grid, including the ghost boundaries, one intermediate step. The process continues until the
one time-step integration is completed. This approach also works for implicit methods.

3.2.2 Advance one time step

Given the user solver for a single grid, we can reuse two kinds of routines. First, if the solver
collects the boundary values only once and at the beginning of each time integration, we can
directly plug the whole solver (for one time step) into our AMR system without modifications.
Apart from the external boundaries and parent coarse grids, the ghost boundary values are
also collected from the internal boundaries. Therefore, we cannot integrate each patch
separately if boundary collections are done more than once for a single time step. If the
solver for a single grid treats each boundary as an external boundary, and imposes the
boundary conditions several times while advancing the solution during a time step, then the
routine must be modified to account for the internal patch boundary conditions.
The 1-D algorithm is much simpler than the higher dimensional AMR methods because

of the lack of siblings and overlayed internal boundaries.

3.3 Recursive Stage

In this stage, the integration forms a W-cycle.

3.4 The Project Stage

After integrating the finest grid T time steps, the finest grid reaches the same time level as
the coarser grid, and the coarser grid starts integration again. Before the coarser grid starts
integration, the solution needs updating. That is, the more accurate values of the solution
on the finer level replace the values of the solution on the coarser level where they coincide.
When the refinement ration r is even, then the solution variables located at the nodes are
copied and the cell centered are interpolated. When r is odd, then the opposite is true.
Whnen a conservation law is being solved, a flux correction procedure, proposed by

Berger and Colella [1], must be implemented for the coarse cells at the coarse-fine interface
to preserve global conservation. The flux correction needs the flux information of both
the fine and coarse grids. Therefore, the solver must store and return the flux during the
discretization and integration. Note that the flux correction must be performed before the
projection to ensure that the coarse grid has the optimal solution values.

4 User Control over the AMR process

For some applications, the monitor function may fail to identify all the regions that need
to be refined. For example, when we solve the Euler equation by the artificial viscosity
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method, the region near the contact discontinuity cannot be resolved as well as the region
near the shock wave. After some time, the refinement level at the region near the contact
discontinuity is reduced. We need to add finer levels in that region to ensure that the
discontinuity is properly resolved. Also, there are situations such as the early evolution
of the solution where we are only interested in the final steady state solution where the
efficiency of a calculation can be improved if a user has control over the AMR process. In
the extreme situation, a user may want complete control to guide the refinement process at
any time and any place.
The user has this control of our AMR system through a grid file. (see Figure 3). While

$$amrGF
next refinement time = t,
number of refinement levels = numlev,
number of patches of level 1 = patch0,
patch(1, 1) = startx, endx,
...

number of patches of level i = patchi,
...
patch(ipatch, ilevel) = startx, endx,
...

$$end

Figure 3: Data format for grid file.

the equations are being integrated, the patch and the base grid information in the grid file
are used to compute the logical coordinates for the refined grid. The algorithm is: first find
the logical cell in the base grid that contains the end point; then divide it l − 1 times if the
patch is at the l level; finally, locate the nearest point and assign its logical coordinate to
the end point.
Most error estimators are good for estimating small errors, but there are situations where

there are insufficient computer resources to drive the truncation errors to very small values.
In these situations, the grid must be coarser and the errors may be of moderate size and the
error estimators fail. The grid file can be used to explicitly control the refinement based on
limitations in the computer resources rather than just minimizing the truncation error.
We have designed a friendly graphical user interface to modify and optimize the grid

file. The above routine can also communicate through calls or piped data channels (you can
forget about the files and pipe the data between these routines on every time step during
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a run and the package will work like a traditional adaptive mesh refinement). We’ve lost
nothing but gained in the flexibility and equally important lowered the buy in threshold
The input grid file can also be used to prevent chattering where a region is first refined

because of, say, oscillations near a steep front. When the oscillations disappear then the error
estimate monitor the smooth solution and signal that the local refinement may be coarsened.
On the coarsened grid, the oscillations reappear and trigger a new AMR refinement and the
cycle starts over again.
For 1-D AMR grids it facilitates output and display of the solutions that transforming

the hierarchical data to a conventional linear array data, i.e., instead of outputting the data
as many patches, the data can be analyzed and plotted as a single nonuniform grid. We
provide a software tool to convert the data using the W-cycle algorithm illustrated in Figure
4 for four refinement levels.

level 1 |-1-|-----------------|-7-|-------|-10-| 1 patch

level 2 |-2-|-----------|6| |-8-|---| 2 patch

level 3 |-3-|---|-5-| |-9-| 2 patch

level 4 |-4-| 1 patch

Figure 4: Order for hierarchical data structure to output as one patch

The user is given additional control over the AMR process by

• Allowing the user to specify the time-step size at any time.

• Allowing the user to modify the refinement parameter, monitor function, maximum
refinement level, etc.

• Allowing the user to save all the solution and grid at any time for debugging, modifi-
cation or re-starting the simulation.

5 Numerical Experiments

5.1 Software design

Our goal port is to improve the effectiveness of applications programmers solving systems on
nonlinear PDEs, but are not necessarily experts in AMR. In designing the AMR software we
have emphasized maximizing the flexibility, modularity, reliability, efficiency, and restricted
data flow and documentation. Because these are global properties, we have built them in
from the initial design phase so the AMR software fits together in a logical structure.
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Types of computers and operating systems to run the applications codes will proliferate
in the next few years. We must design the interface between the module and applications
code to be as stable as possible. In this way the applications code can be easily moved from
machine to machine, always using the modules that are best suited to and optimized for
the current computer hardware. It is a major task to design support software with a stable
interface and still fully exploit the available machine hardware.
We also recognize that programmers considering using the software must plan for possible

situations where the software may fail. Although most of the development time in a AMR
software system goes into debugging and maintenance, programmers make errors. Even
though the designers of AMR software packages make every effort to protect their users,
exhaustive testing of all the options on large problems is impractical. To evaluate the AMR
software on large scale problems we have tried to make it compatible with existing techniques
and simple enough so that potential users can observe tangibly better results in a trial run.
Software packages that can reproduce the capabilities of the existing ones, but work better,
are the most readily accepted.
Also, the changes needed to evaluate the software should be chosen so that the modified

code would have increased capabilities independent of the success of the AMR.
For these new models to affect a design, they must be in the design code. It is unrealistic

to expect the physics model, the numerical methods, or the computer architecture to be sta-
ble during the lifetime of the code. Any up-to-date large production program will eventually
exist in a multitude of different versions. It is common sense to leave options open so we
can anticipate and profit from advances whenever possible. Thus, flexibility was a major
design criterion. A code that is more flexible than necessary is far better than one that is
inflexible and unable to handle future problems. Also, we realize that it is human nature to
underestimate the size of a software package, such the AMR, necessary to achieve the robust
efficiency in production problems. Our approach has been to develop the code around a few
simple structures and reduce the number of interconnections that the programmer must be
aware of by dividing the software into a set of easy-to-understand code modules.
Applications programmers can understand what a module does and then use it without

knowing what goes on inside. But before they do, they must have confidence in the reliability
and efficiency of the numerical methods and the allowed data flow. Not only must the module
produce correct results in a timely fashion, but it must do so without influencing the rest of
the code by severely restricting the communication links between the routines.
To make efficient use of the hardware without inefficiently using the application pro-

grammer’s time we have provided interfaces in C, FORTRAN and C++ that will allow the
applications programmers to program in the language they prefer as long as it is compatible
with the interfaces provided by the AMR routines.
The user can try different combinations of numerical and physical models in the library,

tailor the code and optimize it to a specific problem. Also, because the source codes of the
library routines are available, users can easily modify these codes to develop and test new
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ideas on the AMR code validation test problems, as well as on own full-scale production
problems. This approach also allows specialists in physics, numerical analysis, or computer
science to explore new models, methods, and systems software in production codes without
being required to know the details of the AMR software.
Fundamental advances in the capability and efficiency of future production code software

will require research and innovations in numerical methods and software design before the
software will perform as advertised over a broad range of input data, compilers, operating
systems, and machine hardware. There must be checks in the software to detect and recover
from (or report) anomalous situations.
The AMR algorithms in large-scale scientific codes can be highly complicated and problem

dependent. That is, a method developed for a particular test problem may not work for
similar but larger problems. Methods that work well in one space dimension may not be easily
extended to two or three dimensions. This fact puts a huge burden on AMR code developers,
who must small-scale test problems solved by simple methods, to choose algorithms that will
scale properly to model a far more complex system. After the choice is made, they must
redevelop the software necessary to test it-usually duplicating the efforts of the original
author.
To avoid repetition of expensive, error-prone, and time-consuming coding of AMR we

have developed a library of high-level software to make the common elements of the code
are available as modules, the applications programmers can plug into these routines and
eliminate much of their effort.
There is no guarantee that the AM package will be stable, well supported in the future,

be available on MY next computer system. I need a fall back (safety net) position.
In parameter studies where a series of computer simulations are made with only slight

changes in the problem parameters or levels of refinement the grid file can be used to explicitly
define the mesh in a current simulation based on what it was in past simulations. The mesh
function for this programmed mesh can still be evaluated to ensure that the solution is
being adequately resolved, but it need not be evaluated as often as when there is no a prior
information on the mesh adaptation. This can significantly reduce the costs of monitoring
the error and the other overhead for the AMR.
In the following numerical examples experiments, the refinement ratio r = 2, and there

are a maximum of six refinement levels.

5.2 Burgers’ Equation

Burgers’ equation,
ut + uux = 0, x ∈ [0, 1], t > 0 (2)

with smooth initial conditions

u(x, 0) = 0.5 sin(πx) + sin(2πx), x ∈ [0, 1],
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and homogeneous boundary conditions, u(0, t) = 0 and u(1, t) = 0 serves as a standard test
for adaptive methods ([13]).
We integrated the equation using 50 uniform base grid points and TOLS = 0.075 with the

internal monitor. The finest (6th) level has a resolution of 26 × 50 = 1600 grid points. The
equation is integrated with the third-order Runge-Kutta method and third-order WENO
scheme ([16]) (Fig. 5.5-a) with 50 base grid points. The CFL number ||u||max

δt
∆x
= 0.8.

For comparison, we plot (the dotted line in the figures) a reference solution computed with
an adaptive moving mesh method (see [12]) with 601 grid points. We also integrated the
equation the forward Euler method (instead of the third-order Runge-Kutta method) and
observed that the decreased time integration errors caused the numerical solution to signifi-
cantly behind the reference solution.
To illustrate the flexibility of our AMR system and the re-usability of the user’s code,

we plugged in the hyperbolic PDE solver routine claw1 from CLAWPACK [9]. Since claw1
collects the boundary values only once at the beginning of the each time step, it was easy
to block the boundary condition routine by providing a dummy subroutine and write a
simple interface routine to define the CLAWPACK arguments and parameters. We did not
to modify any of the original CLAWPACK software. The results, shown in Figure 5.5-b for
21 base grid points, demonstrate how effective the combination of the CLAWPACK solver
and AMR is for solving these types of PDEs.

5.3 Linear Wave Propagation

The second example is a wave equation

ut + ux = 0, x ∈ [0, 1], t > 0 (3)

with periodic boundary conditions and the initial conditions

ut=0 =
{

1, if x ∈ [0.4, 0.6],
0, otherwise.

The solution shown in Fig. 5.6 is a square wave propagating to the right side at a speed of 1.
The leading edge of the square wave reaches the right boundary at t = 0.4, and the trailing
edge reaches the right boundary at t = 0.6. The wave emerges from the left side because of
the periodic boundary conditions. The base grid has 40 nodes, TOLS = 0.1, CFL number
is ∆t
∆x
= 0.5 and the equations were integrated with a third order WENO scheme [10].

5.4 Scalar Combustion Model

The single-step, reaction-diffusion PDE,

ut = uxx +D(2− u) exp(−d/u), 0 < x < 1, 0 < t, (4)

ux(0, t) = 0, u(1, t) = 1, u(x, 0) = 1,
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Figure 5.5-a: The AMR solution of Burgers’ equation (2) is shown at times t = 0, 0.2, 0.6, 1.0, 1.4, 2.0
was calculated using a third-order Runge-Kutta method and a third-order WENO scheme for the spatial
derivatives.
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Figure 5.5-b: The AMR solution of Burgers’ equation (2) is shown at times t = 0, 0.2, 0.6, 1.0, 1.4, 2.0 was
calculated using the CLAWPACK solver.
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Figure 5.6: AMR withWENO scheme for wave propagation problem (3) with periodic boundary conditions.
The results show that our AMR system has no problem in handling the periodic boundary conditions. Plotted
at t = 0.0, 0.4, 0.5, 0.6.

where D = 5ed/d, d = 30. The solution is the temperature of a reactant that gradually
increases from unity until a “hot spot” forms at x = 0 causing the temperature to rapidly
increase to 2. A front forms and quickly propagates towards x = 1 with speed proportional
to d [12].
We used 40 nodes for the base grid and five refinement levels, which corresponds to the

resolution of a 640 point uniform grid. Because the steep wave front develops extremely
fast after t = 0.24, we choose the error tolerance for space to be 0.0005 (we had tried 0.001
and the integration failed). We set the initial time step for the base grid to be 0.0001 and
integrated the solution with the explicit second order improved Euler method. The spatial
derivatives are discretized by central difference scheme. For comparison, we plot the solution
in Fig. 5.7 at the same time as published for the moving mesh method in [12]. Because small
time steps are unnecessary before the wave front has been formed, the adaptive refinement
is turned on at t = 0.24 and the time step is chosen according to the CFL condition before
the wave forms to reduce the computation time

5.5 Fisher’s Equation

In this example we demonstrate how, even with the AMR refinement and small time steps
on the finer grids, the solution can be inaccurate unless there is sufficient accuracy in the
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Figure 5.7: Results of explicit AMR method for scalar combustion model. We manipulate the refinement
by using only 1 refinement level before t = 0.24, and 5 level after that time, which sharply reduces the
computation time. Output at t = 0.0, 0.24, 0.2405, 0.241, 0.242, 0.244, 0.246.

time inegration. Fisher’s equation

ut = uxx + αu(1− u), x ∈ [−1, 1], t > 0 (5)

is often used to illustrate this weakness in moving mesh methods [12]. We defined initial
conditions consistent with the analytic solution

u(x, t) =

(

1

1 + e
√

α
6
x−

5

6
αt

)2

, (6)

with α = 104. The initial and boundary conditions are derived from equation (6) except
that we choose the left boundary to be fixed, i.e., u(1, t) = 0. We choose the error tolerance
for space to be 0.0001. We used 40 nodes for the base grid and five refinement levels, which
corresponds to the resolution of a 640 point uniform grid. The allowable time stepsize by
the stability restriction is ( 1

40·2level−1 )
2, where one time step at the coarse level corresponds

to 4 time steps at the next finer level because the CFL number is proportional to (∆x)2. We
used 10−4 as the time step for the base grid, which is much smaller than 6.25× 10−4, which
is required by the stability restriction. The accuracy is O(10−4) for the first order forward
Euler method and O(10−8) for the second order Runge-Kutta method. That’s why (see Fig.
5.8) the second order Runge-Kutta method is more accurate. Actually the time step for the
base grid should be selected to maintain error tolerance for the temporal integration to be
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less than 10−6 per unit time for this problem. If the time step on the coarser grid is much
smaller than required by the CFL condition, then the same time step on the finer grids
would also satisfy the temporal error estimate. Therefore, it is possible that the time step
size on the coarse grid may be equal to the time step size on the fine grid. The time step is
determined by both the accuracy and the stability at any level, not by the refinement ratio
(as is typical in most implementations of the AMR method [1, 2, 14, 15]).
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Figure 5.8: Result of Fisher’s equation by AMR method. The second order Runge-Kutta method is more
accurate. Our AMR sysmtem has no problem in plugging in this kind of the method of lines solvers. Plotted
at t = 0.0, 0.001, 0.002, 0.003, 0.004, 0.005.

5.6 Shock-tube Problem

The example will illustrate how to flexibility of using previous simulations to fine tune the
AMR grid to better track features in the solution.
The Euler equations for gas dynamics,

ρt + (ρu)x = 0,

(ρu)t + (p+ (ρu)
2/ρ)x = 0,

et + ((e+ p)(ρu)/p)x = 0,

are an effective test for both extremely steep gradients and moving fronts.
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5.6.1 Sod Shock tube problem

The initial conditions from Sod’s shock tube problem [17]

(ρ, (ρu), e) =
{

(1.0, 0.0, 2.5), if x ≤ 0.5,
(0.125, 0.0, 0.25), if x > 0.5.

result in a fast moving shock wave to the right ahead of a slower moving contact discontinuity
and a rarefaction wave to the left of the initial discontinuity. We first solve this problem
with the artificial viscosity and 40 points in the base grid. The tolerance for the monitor
function in space is TOLS = 0.1. We plot density ρ at time t = 0.1 in Fig. 5.10. Except
for the shock wave, the other three corners are not resolved well by automatic adaptivity in
our AMR system because of the effect of the artificial viscosity. So we dump the grid file
and modify it using our grid file editor, adding refinement at the three corners, and let the
AMR system read our grid file instead of automatically refining. For comparison, an exact
solution of 1000 points is also provided. The slope of the contact discontinuity is due to the
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Figure 5.9: AMR with artificial viscosity method for Sod’s shock-tube problem. t = 0.1. Manipulation of
the refinement can greatly improve the results.

artificial viscosity.
We also plugged in the CLAWPACK solver to solve this problem with 50 points in the

base grid and compared it with the performance of one single uniform grid. The CPU time
to solve this problem with 401 mesh points is 28.2 seconds compared to 4.8 seconds for a 4
level AMR method with the same fine grid resolution. The CPU time for 801 mesh points
(122.4 seconds) is almost 13 times longer than for the five level AMR method (9.5 seconds).
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Figure 5.10: AMR with CLAWPACK solver for Sod’s shock-tube problem. t = 0.1.

Note that on a uniform grid if the number of grid points double, the CPU time increases by
more than a factor of 4, while it only doubled when increasing the number of levels for the
AMR refinement. This is one of the advantages of choosing the time step locally for each
patch.
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5.6.2 Woodward-Colella blast wave problem

The interaction of two blast waves solutions of Eq. 7 has served a test example to compare
different numerical schemes by Woodward and Colella [20]. The initial conditions are

(ρ, (ρu), e) =











(1.0, 0.0, 2500.0), if 0 ≤ x ≤ 0.1,
(1.0, 0.0, 0.025), if 0.1 < x < 0.9,
(1.0, 0.0, 250.0), if 0.9 ≤ x ≤ 1

with the same reflecting boundary conditions as for Sod’s shock-tube problem. The rapidly
changing solution is difficult to resolve by moving mesh methods, but not by AMR. The
spatial discretization is the second-order Roe’s method with superbee limiter. We use a 50
points base grid and 6 refinement levels. The results in Figs. 5.11-a and 5.11-d compare
very favorably with the high resolution solutions given in Ref. [20].

6 Conclusion

The numerical experiments, verify the effectiveness of the AMR method for 1-D problems.
Our experience with other applications indicates that our AMR system easily accommodates
new applications and requires very little modification of existing codes that work for a single
grid. Moreover, the user can have full control over the refinement and integration. Our AMR
method involves relatively little overhead in refinement and data management.
Our AMR system described here is for 1-D problems. However, most of the algorithms

and the data structure have been extended to 2-D and are being extended for 3-D prob-
lems with minor modification. In higher dimensions, and the clustering algorithm is far
more complicated, the existence of siblings and multiple parents for each patch introduce
complications. We will describe some new features of our 2-D AMR system in Part II [13].
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